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Abstract

Effects of uncertainties on the dynamic response of the nonlinear vibration systems with general form are investigated.

Based on interval mathematics, modeling the uncertain parameters as interval numbers, a non-probabilistic interval

analysis method, which estimates the range of the nonlinear dynamic response with the help of Taylor series expansion, is

presented, where the partial derivatives of the dynamic response with respect to uncertain parameters are considered to be

interval numbers. The sensitivity matrices of dynamic response with the uncertain parameters are derived. For the

presented method, only the bounds on uncertain parameters are needed, instead of probabilistic density distribution or

statistical quantities. Numerical examples are used to illustrate the validity and feasibility of the presented method.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response analysis plays an important role in the design and analysis of structural systems.
However, the material properties and structural geometry usually exhibit uncertainties due to the manufacture
errors, measurement errors and other factors. Consequently, the dynamic response of structural system is also
uncertain.

In recent years, the dynamic response analysis of linear vibration system with uncertain parameters has been
studied extensively, including probabilistic methods [1–3] and non-probabilistic methods [4–7]. Shinozuka
presented a method by which a least favorable structural response can be estimated to the excitation of non-
deterministic nature such as earthquake acceleration [1]. Chen et al. [2] proposed a probabilistic method to
evaluate the effect of uncertainties in geometrical and material properties of structures on the vibration
response of random excitation. The stochastic orthogonal polynomial expansion method is extended with the
pseudo-excitation method by Li and Liao [3], and this extension enables the stochastic orthogonal polynomial
method to be readily used in the analysis of stochastic parameter structures under non-stationary random
excitation. Based on the matrix perturbation theory and the interval extension of function, the upper and
lower bounds of the dynamic response are obtained by Chen et al. [4], while the sharp bounds are guaranteed
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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by the interval operations. Qiu and Wang [5] developed non-probabilistic interval analysis method for the
dynamical response of structures with uncertain-but-bounded parameters by combining the finite element
method and interval mathematics. Subsequently, they evaluated the range of dynamic responses of structures
with uncertain-but-bounded parameters by using the parameter perturbation method [6]. Based on the
improved first-order Taylor interval expansion, a new interval analysis method for the static or dynamic
response of the linear structural system with interval parameters is presented [7].

However, the nonlinear vibration systems with uncertain parameters are far more complicated than linear
vibration systems, and the effective methods for linear system (such as the superposition principle) are not
valid for nonlinear systems. As a result, the research of the nonlinear dynamic response analysis of nonlinear
vibration system with uncertainty is in the developmental stage.

So far, the main methods for solving the nonlinear dynamic response with uncertain parameters are
probabilistic methods. Probability perturbation finite element method was presented by Wen et al. [8] to
obtain the mean value and variance of the dynamic response of random nonlinear vibration systems with 2D
matrix functions. Impollonia and Muscolino [9] applied the improved perturbation method in the second-
order analysis of geometrically nonlinear stochastic systems subjected to static and dynamic deterministic
forces. Pradlwarter et al. [10] presented an algorithm for the computation of the stochastic non-stationary
nonlinear response of large FE-model. Li and Chen [11,12] proposed the probability density evolution method
for dynamic response analysis of nonlinear stochastic structures. Cai and Lin [13] proposed an improved
equivalent linearization procedure for nonlinear systems under bounded random excitations. Pishkenari et al.
[14] discussed the nonlinear dynamic analysis of atomic force microscopy under deterministic and random
excitation. Guo et al. [15] studied the nonlinear random response of laminated composite shallow shells using
finite element modal method. Kumar and Datta [16] discussed the determination of probability density
function of the response for strongly nonlinear single-degree-of-freedom system subjected to both
multiplicative and additive random excitations using stochastic averaging technique.

In above probabilistic models, the uncertain variables are usually dealt with random quantity or stochastic
process, where extensive knowledge of the probabilistic characteristics of the uncertain information is
required. However, the information about the uncertain parameters is often scanty so that the distributed
characteristics are difficult to get. In these cases, the non-probabilistic interval models can be used as
alternative way. Non-probabilistic interval analysis methods are less information-intensive than probabilistic
models, since only the bounds on uncertain parameters are required. By far, research in non-probabilistic
modeling on uncertain nonlinear dynamic response has not been widespread and is only currently gaining
attention.

In this paper, an approximate solution technique for nonlinear dynamic response with uncertain-but-
bounded parameters is proposed based on interval mathematics, resorting to Taylor series expansion. The
sensitivity of nonlinear dynamic response with respect to uncertain parameters is analyzed. Finally, a single
degree-of-freedom system with nonlinear damping and a 60-bar power pagoda with nonlinear stiffness are
used to illustrate the applications of the presented method.

2. Problem description

Consider the n degree-of-freedom nonlinear system with uncertain parameters. The general form of
differential equation can be described by

f ðB; x; _x; €xÞ ¼ F ðB; tÞ (1)

with the initial conditions

xð0Þ ¼ x0; _xð0Þ ¼ _x0 (2)

where f, x, F are the nonlinear function, displacement and external force, respectively; and the superscript ‘‘ � ’’
represents the derivative with respect to time t. B is the m-dimensional uncertain parameter vector, which is
used to describe the uncertain effects. The deterministic part and the uncertain part are implicit in Eq. (1). If
the probabilistic distributions of all uncertain parameters variable are known, the probabilistic statistics
information of nonlinear structural response system can be solved by the method introduced in Ref. [8].
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However, in some cases, the probabilistic characteristics of the uncertain parameters are unknown, and the
only known parameter is the interval of the uncertain parameters, namely

BpBpB (3)

or the component form

bipbipbi; i ¼ 1; 2; . . . ;m (4)

in which B ¼ ðbiÞ and B ¼ bi are, respectively, the upper bound vector and the lower bound vector of the
uncertain-but-bounded parameter vector B ¼ (bi). By virtue of the interval vector notation [17,18], the vector
inequality constraint conditions can be written as

B 2 BI ¼ ðbI
i Þ ¼ ½B;B� or bI

i ¼ ½bi; bi�; i ¼ 1; 2; . . . ;m (5)

where BI is the m-dimensional interval vector. Then the solution of Eq. (1) subject to Eq. (3) or Eq. (4) is a set,
and this set is given by

G ¼ fx : f ðB; x; _x; €xÞ ¼ F ðB; tÞ;B 2 BIg (6)

In general, the set G has a complicated region. In interval mathematics [18], solving the nonlinear problem
(1) subject to (3) or (4) is synonymous to finding a multidimensional rectangle or interval vector containing
nonlinear response set (6). In other words, the upper and lower bounds on the nonlinear response set (6) will
be sought as follows:

xi 2 xI
i ¼ ½xi;xi�; i ¼ 1; 2; . . . ; n (7)

where

xðtÞ ¼ max
B2BI
fxðtÞ : f ðB;x; _x; €xÞ ¼ F ðB; tÞ;B 2 BI g (8)

and

xðtÞ ¼ min
B2BI
fxðtÞ : f ðB;x; _x; €xÞ ¼ F ðB; tÞ;B 2 BI g (9)

Obviously, the maximum and minimum values in Eqs. (8) and (9) are all global optimal solutions.

3. Interval analysis method based on Taylor series expansion

Based on the interval transformation, Eq. (5) can be put into the more useful form

BI ¼ Bc þ ½�DB;DB� (10)

where Bc and DB denote the middle vector and the uncertain vector (or the maximum error) of BI, respectively.
It follows that

Bc ¼ ðBþ BÞ=2 or bc
i ¼ ðbi þ biÞ=2; i ¼ 1; 2; . . . ;m (11)

DB ¼ ðB� BÞ=2 or Dbi ¼ ðbi � biÞ=2; i ¼ 1; 2; . . . ;m (12)

Then the uncertain-but-bounded parameter vector B could be denoted as the following vector form:

B ¼ Bc þ dB; jdBjpDB (13)

or the component form

bi ¼ bc
i þ dbi; jdbijpDbi; i ¼ 1; 2; . . . ;m (14)

Let a be a scalar, then the nonlinear dynamic response xk(B
c+a(B�Bc),t) can be regarded as a function of

the single variable a. By virtue of Lagrangian mean value theorem, expanding xk(B
c+a(B�Bc),t) about a ¼ 0

and setting a ¼ 1, we will have

xkðB; tÞ ¼ xkðB
c; tÞ þ ðB� BcÞ

TgðBc þ xðB� BcÞ; tÞ (15)
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where 0pxp1 and g is the gradient of xk(B,t). Since B 2 BI and Bc 2 BI , then Bc þ xðB� BcÞ 2 BI . Therefore

xkðB; tÞ 2 xkðB
c; tÞ þ ðB� BcÞ

TgðBI Þ � xkðB
c; tÞ þ ðBI � BcÞ

TgðBI Þ (16)

Since Eq. (16) holds for all B 2 BI , we have

xkðB
I ; tÞ � xkðB

c; tÞ þ ðBI � BcÞ
TgðBI Þ (17)

It can be seen from Eq. (17) all the variables in g are intervals. In the following we can illustrate that some of
the variables in g(BI) can be substituted with real quantities so that a sharper bound on xk(B

I,t) can be
obtained.

Firstly, xk(b1,b2,y,bm,t) is considered as a function of bm only. Expanding xk(b1,b2,y,bm,t) about bc
m yields

xkðb1; b2; . . . ; bm; tÞ ¼ xkðb1; b2; . . . ; b
c
m; tÞ þ ðbm � bc

mÞgmðb1; b2; . . . ; xm; tÞ (18)

Then, expanding xk(b1,b2,y,bm
c,t) about bm�1

c as a function of bm�1 yields

xkðb1; b2; . . . ; b
c
m; tÞ ¼ xkðb1; b2; . . . ; b

c
m�1; b

c
m; tÞ þ ðbm�1 � bc

m�1Þgm�1ðb1; b2; . . . ; xm�1; b
c
m; tÞ (19)

Substituting Eq. (19) into Eq. (18) yields

xkðb1; b2; . . . ; bm; tÞ ¼ xkðb1; b2; . . . ; b
c
m�1; b

c
m; tÞ þ ðbm�1 � bc

m�1Þgm�1ðb1; b2; . . . ; xm�1; b
c
m; tÞ

þ ðbm � bc
mÞgmðb1; b2; . . . ; xm; tÞ (20)

The rest may be deduced by analogy, and we have

xkðb1; b2; . . . ; bm; tÞ ¼ xkðb
c
1; b

c
2; . . . ; b

c
m�1; b

c
m; tÞ þ

Xm

i¼1

ðbi � bc
i Þgiðb1; . . . ; bi�1; xi; b

c
iþ1 . . . ; b

c
m; tÞ (21)

where xi 2 bI
i . Due to bi 2 bI

i , so we can obtain

xkðb1; b2; . . . ; bm; tÞ 2 xkðb
c
1; b

c
2; . . . ; b

c
m�1; b

c
m; tÞ þ

Xm

i¼1

ðbI
i � bc

i Þgiðb
I
1; . . . ; b

I
i�1; b

I
i ; b

c
iþ1 . . . ; b

c
m; tÞ (22)

Since the relation (22) holds for all bi 2 bI
i ði ¼ 1; 2; . . . ;mÞ, the nonlinear dynamic response interval can be

approximately obtained as follows:

xkðb
I
1; b

I
2; . . . ; b

I
m; tÞ � xkðb

c
1; b

c
2; . . . ; b

c
m�1; b

c
m; tÞ þ

Xm

i¼1

ðbI
i � bc

i Þgiðb
I
1; . . . ; b

I
i�1; b

I
i ; b

c
iþ1 . . . ; b

c
m; tÞ (23)

By virtue of the first-order Taylor series expansion, the gradient gi of xk(B,t) about Bc can be developed as

giðB; tÞ ¼
qxkðB; tÞ

qbi

�
qxkðB

c; tÞ

qbi

þ
Xm

j¼1

q2xkðB
c; tÞ

qbiqbj

ðbj � bc
j Þ; i ¼ 1; 2; . . . ;m (24)

By making use of the natural interval extension, from Eq. (24) we can obtain the interval of the gradient gi

as follows:

giðB
I ; tÞ ¼

qxkðB
I ; tÞ

qbi

�
qxkðB

c; tÞ

qbi

þ
Xm

j¼1

q2xkðB
c; tÞ

qbiqbj

ðbI
j � bc

j Þ; i ¼ 1; 2; . . . ;m (25)

Substituting Eq. (25) into Eq. (23) leads to

xkðb
I
1; b

I
2; . . . ; b

I
m; tÞ � xkðb

c
1; b

c
2; . . . ; b

c
m�1; b

c
m; tÞ þ

Xm

i¼1

ðbI
i � bc

i Þ
qxkðB

c; tÞ

qbi

þ
Xi

j¼1

q2xkðB
c; tÞ

qbiqbj

ðbI
j � bc

j Þ

" #
(26)

By the interval operations, from the above Eq. (26), we can determine the interval region of the nonlinear
dynamic response of structures with uncertain-but-bounded parameters using the interval analysis method.
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4. Partial derivatives determination of nonlinear dynamic response

In this section, based on the assumption that the nonlinear function f ðB;x; _x; €xÞ and the external force F(B,t)
are continuously two-order differentiable with respect to uncertain parameters, the first- and second-order
partial derivatives of nonlinear dynamic response with respect to uncertain parameters will be derived.

Differentiating both sides of Eq. (1) with respect to bi yields

M
q €x
qbi

þ C
q _x
qbi

þ K
qx

qbi

¼
qF

qbi

�
qf

qbi

(27)

where M, C, K are the mass matrix, the damping matrix and the stiffness matrix, respectively, and they are
defined by

M ¼
qf

q €xT
; C ¼

qf

q _xT
; K ¼

qf

qxT
(28)

Differentiating both sides of Eq. (27) with respect to bj leads to

M
q2 €x

qbiqbj

þ C
q2 _x

qbiqbj

þ K
q2x

qbiqbj

¼
q2F

qbiqbj

�
q2f

qbiqbj

�
qM

qbj

q €x
qbi

�
qC

qbj

q _x
qbi

�
qK

qbj

qx

qbi

(29)

Substituting B ¼ Bc into Eq. (27) and Eq. (29) and using Newmark-b method, we can obtain the first-order
partial derivative qxðBc; tÞ=qbi and second-order partial derivative q2xðBc; tÞ=qbiqbj.

Generally, in nonlinear dynamic structural analysis the response function may only be formulated implicitly
so that the first- and second-order partial derivatives must be determined numerically. Under these
circumstances, we often resort to the difference approximation of partial derivatives. So this will lead to a high
computational effort especially in the case of high dimensional input spaces, which may be one shortcoming of
the presented method but be unavoidable usually.

5. Probabilistic analysis method

When the uncertain parameters are considered to be random variables, the probabilistic analysis method
can be used to determine the range of nonlinear dynamic response of structures. Here only the simplified
introduction for this method is given. The detailed procedures can be found in Ref. [8].

If B ¼ (bi) is random variable vector, then the structure response x(B,t) is also random. The mean value of
the random variable vector B ¼ (bi) is

EðBÞ ¼ ðEðbiÞÞ ¼ BE ¼ ððbE
ÞiÞ (30)

So Eq. (15) can be viewed as the Taylor series expansion of the random response x(BE+dB,t) about the
mean value BE.

The mean value or expected value of the dynamic response can be obtained by taking the expected value of
both sides of Eq. (15). In so doing, it follows that

EðxkðB; tÞÞ ¼ EðxkðB
E ; tÞÞ þ E

Xm

i¼1

qxkðB
E ; tÞ

qbi

dbi

 !

¼ xkðB
E ; tÞ þ

Xm

i¼1

qxkðB
E ; tÞ

qbi

Eðbi � bE
i Þ; k ¼ 1; 2; . . . ; n (31)

It is noted that the term E(dbi) ¼ E(bi�bi
E) ¼ 0 is zero, then we obtain

EðxkðB; tÞÞ ¼ xiðB
E ; tÞ (32)

The variance of the nonlinear dynamic response can be obtained in a similar way as follows:

VarðxkðB; tÞÞ ¼
Xm

i¼1

qxkðB
E ; tÞ

qbi

� �2

VarðbiÞ þ
Xm

i¼1

Xm

j¼1

qxkðB
E ; tÞ

qbi

qxkðB
E ; tÞ

qbj

Covðbi; bjÞ (33)
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where Cov(bi,bj) is the covariance of the random structure parameter variables. When the random structural
parameter variables are independent, the variance of the dynamic response can be reduced as

VarðxkðB; tÞÞ ¼
Xm

i¼1

qxkðB
E ; tÞ

qbi

� �2

VarðbiÞ ¼
Xm

i¼1

qxkðB
E ; tÞ

qbi

si

� �2

(34)

Obviously, the standard deviation of the nonlinear dynamic response xi(B,t) is

sðxkðB; tÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðxkðB; tÞÞ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

qxkðB
E ; tÞ

qbi

si

� �2
vuut (35)

According to the Tchebyche’s inequality [5], the probabilistic region of l (a positive integer) times standard
deviations from the mean value of the nonlinear dynamic response is

yI
k ¼ ½yk

ðB; tÞ; ykðB; tÞ� ¼ ½xkðB
E ; tÞ � lsðxkðB; tÞÞ;xkðB

E ; tÞ þ lsðxkðB; tÞÞ�; k ¼ 1; 2; . . . ; n (36)

where the probabilistic upper bound and lower bound are, respectively

ykðB; tÞ ¼ xkðB
E ; tÞ þ lsðxkðB; tÞÞ ¼ xkðB

E ; tÞ þ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

qxkðB
E ; tÞ

qbi

si

� �2
vuut (37)

and

y
k
ðB; tÞ ¼ xkðB

c; tÞ � lsðxkðB; tÞÞ ¼ xkðB
E ; tÞ � l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼1

qxkðB
E ; tÞ

qbi

si

� �2
vuut (38)

So far, from Eqs. (37) and (38), we can obtain the range of the nonlinear dynamic response of structure with
uncertain parameters using the probabilistic approach.

6. Numerical examples

In order to illustrate the validity of the presented method for the dynamic response analysis of nonlinear
vibration system with uncertain parameters, we apply it to two numerical examples, which include a single
degree-of-freedom system with nonlinear damping and a 60-bar power pagoda with nonlinear stiffness.

6.1. Single degree-of-freedom system with nonlinear damping

Suppose that the nonlinear vibration equation of a single degree-of-freedom system subject to external
excitation can be described as

€uþ 2b sin _uþ u ¼ k sin 2tþ
p
2

� �
þ cos 10tþ

p
3

� �
þ sin 20tþ

p
4

� �� �
(39)

and the initial condition

uð0Þ ¼ 0:0; _uð0Þ ¼ 0:0 (40)

Here, it is assumed that the uncertain parameters vector is B ¼ [b,k]T, and the uncertain parameters b and k

are normally distributed with a coefficient of variation x ¼ 1%. The mean values of these parameters are
bE
¼ 5.0, kE

¼ 5, respectively. For comparison, their interval quantities are taken as bI
¼ [bE

�lxbI, bE+lxbI]
and kI

¼ [kE
�lxkE, kE+lxkE], where l ¼ 3. The presented method and probabilistic analysis method are used

to calculate the regions of the dynamic displacement response u. The exact interval solutions of them obtained
by using quasi-Newton method will be taken as the benchmarks of comparison. Particularly, the difference is
used to approximate the derivative computation, and six re-analysis of structure is needed for this example.

Fig. 1 shows the comparison of time history interval curves between the interval analysis method and the
exact solution method, where IU and IL denote the upper bound and lower bound of the interval analysis
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Fig. 1. Comparison of time history curves for the bounds of displacement response u by the interval analysis method and the quasi-

Newton method.

Table 1

Comparison of response intervals between the interval analysis method and the exact solution method

Time Lower bound Upper bound

Interval Exact Error (%) Interval Exact Error (%)

0.00 0.0000 0.0000 0.00 0.0000 0.0000 0.00

0.36 0.0618 0.0634 2.52 0.0720 0.0714 0.84

0.72 0.2253 0.2272 0.84 0.2546 0.2541 0.20

1.08 0.1553 0.1574 1.33 0.1803 0.1797 0.33

1.44 0.1026 0.1045 1.82 0.1206 0.1199 0.58

1.80 �0.1578 �0.1574 0.25 �0.1356 �0.1362 0.44

2.16 �0.2924 �0.2923 0.03 �0.2543 �0.2554 0.43

2.52 �0.3349 �0.3348 0.03 �0.2864 �0.2880 0.56

2.88 �0.2704 �0.2701 0.11 �0.2311 �0.2325 0.60

3.24 �0.0063 �0.0062 1.61 0.0027 0.0027 0.00

3.60 0.1076 0.1092 1.47 0.1220 0.1214 0.49

3.96 0.2457 0.2478 0.85 0.2802 0.2799 0.11

4.32 0.1479 0.1500 1.40 0.1721 0.1717 0.23

4.68 0.0154 0.0157 1.91 0.0233 0.0225 3.56

5.04 �0.1848 �0.1844 0.22 �0.1585 �0.1593 0.50

5.40 �0.3515 �0.3514 0.03 �0.3061 �0.3073 0.39

5.76 �0.2776 �0.2773 0.11 �0.2348 �0.2364 0.68

6.12 �0.2130 �0.2125 0.24 �0.1790 �0.1803 0.72

6.48 0.0603 0.0614 1.79 0.0649 0.0642 1.09

6.84 0.1536 0.1554 1.16 0.1745 0.1741 0.23

7.20 0.2015 0.2038 1.13 0.2341 0.2338 0.13

Z. Qiu et al. / Journal of Sound and Vibration 319 (2009) 531–540 537
method; EU and EL denote the upper bound and lower bound of the exact solutions, respectively. It can be
seen from Fig. 1 that the upper bounds and the lower bounds yielded by the interval analysis method is almost
coincident with the exact solutions. The Fig. 1 only provide a qualitative insight. Errors of the approximate
solutions obtained by the presented interval analysis method are given in Table 1. From Table 1, we can find
the maximal error is 3.56%, and in most instances the error is 1% more or less, which generally can satisfy the
accuracy demanding in practice. Moreover, the presented interval analysis method has less computational
efforts than the exact solution method.
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Fig. 2. Comparison of time history curves for the bounds of displacement response u by the interval analysis method and the probabilistic

analysis method.
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Fig. 2 shows the comparison of time history interval curves between the interval analysis method and the
probabilistic analysis method. where IU and IL denote the upper bound and lower bound of the interval
analysis method; PU and PL denote the upper bound and lower bound of the probabilistic analysis method,
respectively. It can be seen from Fig. 2 that the interval bounds yielded by the interval analysis method is
basically in agreement with those calculated by probabilistic analysis method, but the former encloses the
latter.

6.2. A 60-bar power pagoda with nonlinear stiffness

Consider a 60-bar power pagoda subject to an x-directional force p(t) as shown in Fig. 3. Suppose that the
stiffness of the system is nonlinear, and the vibration differential equation of system can be represented by

M €xþ Kxþ Kx2 ¼ F ðtÞ (41)

with initial condition

xð0Þ ¼ 0; _xð0Þ ¼ 0 (42)

where M and K are, respectively, the linear mass matrix and stiffness matrix, and F(t) is the external force
vector. The cross-sectional areas of the bars are A ¼ 1.0� 10�3m2.

The density and Young’s moduli of the bars are considered as uncertain parameters, and their intervals are
taken as rI

¼ [rc
�brc, rc+brc] and EI

¼ [Ec
�bEc, Ec+bEc], where rc

¼ 7800.0 kg/m3, Ec
¼ 2.1� 1011N/m2

and b is a variable coefficient or uncertain degree. Particularly, the difference is used to approximate the
derivative computation, and six re-analysis of structure is also needed for this example. Due to large degrees of
freedom, the computational efforts are far more than the previous example. Fig. 4 show the time history
interval curves of x-directional displacement response of Node 21 by the presented interval analysis method
when b is taken as 0.01.

7. Conclusions

In this paper, a non-probabilistic model—interval analysis method is presented to investigate the effects of
uncertainties on dynamic response of the nonlinear vibration systems with general form. The uncertain
parameters are modeled as interval numbers, and the formulations for the presented interval Taylor series
method are derived to approximately estimate the nonlinear dynamic response range. The sensitivity of
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nonlinear dynamic response with respect to uncertain parameters is analyzed. Numerical examples including
different kinds of nonlinearity are performed to validate the presented method by comparison with the exact
solution method and the probabilistic analysis method. The results show the presented method has good
accuracy and less computational efforts in comparison with the exact solution method, so the presented
method is more suitable for large engineering structures. Furthermore, the numerical results also show the
interval bounds obtained by the presented interval analysis method is basically in agreement with those
calculated by probabilistic analysis method, but the former encloses the latter.
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